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Diffusion and reaction in percolating pore networks
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We address the problem of diffusion and reaction in porous catalysts subjected to percolation disorder. The
results with an idealized pore network indicate that the fractal characteristics of the void space can have a
remarkable influence on the transport and reactive properties of the system. Within a specific range of length
scales, we observe scaling behavior relating the catalytic effectiveness of the network and the diffusion-
reaction ratioJ̄N}(D/K)1/dR. In addition, the exponentdR is consistently in the rangedw,dR,dw8 , where
dw is the two-dimensional random walk exponent on the incipient infinite cluster anddw8 is the corresponding
diffusion exponent which includesall clusters of the system at the percolation threshold. Moreover, in contrast
with diffusion under ‘‘inert’’ conditions, where the ‘‘dangling’’ bonds in the percolating cluster do not play
any role in transport, these elements become active zones due to the reaction mechanism. We also outline some
specific guidelines to demonstrate the relevance of these results in the context of design and characterization
problems in heterogeneous catalysis.@S1063-651X~97!10801-7#

PACS number~s!: 47.55,Mh, 05.40.1j
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I. INTRODUCTION

The development of modeling techniques for the desc
tion of transport phenomena through the interstitial vo
space of disordered porous catalysts represents a gen
challenge, due to inherent limitations of traditional mod
which cannot explicitly account for topological and morph
logical characteristics of real porous media@1#. The classical
approach to model diffusion and reaction in porous cataly
is to consider the catalyst particle as a homogeneous sy
where reagents and products can freely diffuse and reac
cording to a given effective transport coefficient and an
trinsic reaction mechanism. Under steady-state conditio
this situation can be mathematically formulated as

Deff¹
2C1R50, ~1!

whereC is the concentration of the reacting species with
the catalyst,Deff its effective diffusivity, andR represents
the intrinsic kinetics, expressing the local rate of creation
annihilation per unit volume of the species one desires
trace in the system.

Recently, it became clear that the classical diffusion f
malism, which is valid for Euclidean geometries, cannot
used to provide a macroscopic description of transport p
nomena in many disordered materials. In the case of po
media, the breakdown of this conventional transport the
can be clearly understood as a consequence of the intr
structural heterogeneity of the complex void space geome
causing significant modifications in the diffusional charact
istics of the system. Generally speaking, the departure f
the classical behavior usually occurs in the form of a sub
fusive regime which has been extensively investigated@1–4#.
The mathematical concept of fractals and the use of perc
tion models as an idealized description for disordered me
turned out to be fundamental ingredients to analyze and
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dict theoretical properties of anomalously diffusive syste
of transport@3,5–10#. There are a number of experiment
works showing strong evidence that, within some limit
range of length scales, many porous catalysts can be con
ered as realizations of fractal morphologies@11#. Much less
effort has been dedicated to the study of diffusion and re
tion in fractal geometries, and its consequences on the r
tive properties of porous catalysts@12–16#. However, it is
not easy to transpose and systematically apply fractal c
cepts in order to solve problems in catalysis.

An important issue in the design of most catalytic react
is the choice of the size of the catalyst pellet. Diffusion
normally considered to be a deleterious mechanism bec
it might restrict the transport of reagent into the deepest
gions of the pellet, reducing the overall reactivity of th
available active surface area. Under these circumstances
smallest pellet would be the preferred material. On the ot
hand, it is well known that small particles produce ‘‘tight
packings, which require a large consumption of energy
pump the reacting species through the extraparticle v
space in a fixed bed reactor. Thus, there is an impor
trade-off between catalyst efficiency and energy consum
tion. The problem could be better analyzed if we had a m
realistic model for the structure and phenomenology of
diffusion-reaction system, but few attempts have been m
to develop a coherent framework where this problem co
be properly examined. Sahimi applied the network of po
model to simulate the effectiveness of an idealized cata
under different diffusion-reaction conditions@17#. The re-
sults with a disordered and fully occupied lattice show
marked contrast when compared with the classical desc
tion, but no reference is made relating the structural featu
of the pore space and its transport properties.

Just above the critical point, the incipient infinite perco
tion cluster is an example of a random fractal that can
used as a conceptual model for real pore catalysts~Fig. 1!.
772 © 1997 The American Physical Society
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FIG. 1. Typical realization of a 2003200 per-
colating square network at the threshold probab
ity (p5pc). The thick lines correspond to th
conducting backbone available for electric
transport in the system. Periodic boundary con
tions are imposed in the transverse directiony
direction!.
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One advantage of using the percolating structure as a m
of porous media is the large amount of research work p
formed to characterize such morphology, and a compreh
sive set of precisely calculated critical exponents is availa
to describe its fractal features. Our main objective here i
investigate the effects of structural self-similarity upon t
catalytic effectiveness of percolating pore networks. W
show by computational simulation that, within some range
diffusion reaction conditions, the fractal aspect of the poro
structure can strongly influence the global effectiveness
the reacting system. This might have profound implicatio
on the design strategy currently applied for the project of r
catalytic reactors in important technological processes.

II. MODEL

Based on the general framework of bond percolation d
order, we develop a practical model to study the influence
the void space on the catalytic characteristics of the syst
We represent the structure of the porous catalyst by a t
dimensional square network of sizeL, where cylindrical
pores of constant length and radiusr are connected to sites o
negligible volume. Each cylinder is open with a probabil
p and blocked with a probability 12p.

We assume that the inner surface of every open pore
a homogeneous distribution of active sites, at which a fi
order reaction (A→B) can take place in the presence
reagent speciesA. Also, if the reactant and product mo
ecules are considerably smaller than the capillary radiusr , a
continuum description for diffusion and reaction can
adopted at the mesoscopic pore level. The concentration
file c(x) of the reactive tracerA diffusing inside a typical
open pore joining adjacent nodesi and j satisfies the mas
conservation equation
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d2c

dx2
5Kc, ~2!

wherex is the axial coordinate in the pore,D the molecular
diffusion coefficient, andK the intrinsic reaction rate con
stant. The boundary conditions are

c~0!5ci and c~ l !5cj . ~3!

The molar flux of the tracer into a pore is,

Ji j52pr 2DS dcdxU
x50

D
i j

. ~4!

From the solution of Eqs.~2! and~3!, Ji j can be expressed a
a linear function of the two concentrations at the connec
nodal points@17,18#

Ji j5pr 2~KD !1/2F ci
tanh~b l !

2
cj

sinh~b l !G , ~5!

whereb[(K/D)1/2.
Considering the sites to be perfect mixing points with

reaction or tracer accumulation, we find the following ide
tity for the mass conservation at each internal site:

(
j51

d

Ji j50, ~6!

where the sum runs over thed nodesj51, . . . ,d connected
to node i in the capillary maze. We also impose a fixe
concentrationC0 at the entrance of the inlet pores, period
boundary conditions in the transverse direction of the latt
(y direction in Fig. 1! and gradientless boundary condition
at the exit of the outlet pores. Hence, the mass balance fo
internal nodes can be expressed in matrix form as
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FIG. 2. Mass flux fields in a typical realization of a 2003200 percolating square network subjected to various diffusion-reac
conditions parametrized bya[D/K: ~a! a5102, ~b! a5104, ~c! a5106, and~d! a5108. The thickness of the bonds corresponds to
magnitude of the mass flux of reactant through them.
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A•c5b. ~7!

HereA is a matrix of conductance coefficients,c a vector of
nodal concentrations, andb an input vector corresponding t
the network boundary conditions. We used a standard s
routine for sparse matrices to solve the system of linear
gebraic Eq.~7! for the nodal concentrations.
b-
l-

III. RESULTS

Before relating any transport property of the system w
its fractal characteristics in a quantitative way, it is instru
tive to visualize the effect of increasing the diffusio
reaction ratioa[D/K(51/b2) on the transport of reactan
inside a typical pore volume. Figures 2~a!–2~d! have been
generated from the solution of Eq.~7! for a single random
realization of the network atp5pc , plotting all bonds in the



o
e

y
e
s
ire

te

r
l
q

n
t

ri-
ng
-
to
-
id
n

de
na
t-
e
th
m
en

p
e
n
o
to
ta
o
n
u-

d

o
tio
l
rk
ra
d
of

t-

f

ro
of

g

55 775DIFFUSION AND REACTION IN PERCOLATING PORE . . .
percolating structure and assigning their thickness in acc
with the mass fluxJi j through the respective cylindrical tub
in the capillary model.

At low values of a, the reactant either diffuses ver
slowly into the catalyst pore space, or it is rapidly consum
by reaction at the active surface area of the capillaries. A
consequence, the mass flux of the reacting tracer is ent
confined to the entrance pores of the lattice@Fig. 2~a!#. As
we gradually increasea, the tracer molecules can penetra
deeper into the pore space@Figs. 2~b! and 2~c!#. In the ab-
sence of diffusional limitations to mass transfer, or at ve
large values ofa @Fig. 2~d!#, the localized flux through al
accessible pores in the lattice should be the same, and e
to a maximum value

Ji j
max5pr 2lKC0 . ~8!

Under these conditions, we can readily identify the regio
in the network where transport and reaction are allowed
occur.

It is interesting to note that, unlike the problem of elect
cal transport in percolating resistor networks, the ‘‘dangli
zones’’ @3# are an active part of the incipient ‘‘infinite’’ clus
ter, i.e., the large cluster which ‘‘spans’’ from one side
another in thex direction of the lattice. Apart from the span
ning cluster, the clusters in direct contact with the inlet s
of the network are also accessible to tracer diffusion a
reaction.

The active role played by the dangling zones un
diffusion-reaction conditions provides a plausible expla
tion for the following unsolved question in the field of he
erogeneous catalysis. There is a substantial amount of
perimental research showing strong evidence that
macroscopic measure of the diffusion coefficient in so
catalysts under inert conditions can be significantly differ
from the ‘‘reactive’’ value of this transport parameter@19–
21#. From the simulations presented here, we could sim
argue that this discrepancy is due to the dramatic chang
the active volume when switching from reactive to inert co
ditions. Correspondingly, the diffusivity in the absence
reaction would be equivalent to the conductivity in a resis
network analog, where the dangling bonds behave as s
nant zones with no current passing through them. This c
trast can be easily seen in Fig. 3, where the active bo
from one reactive realization of the system with no diff
sional limitation @largea, see Fig. 2~d!# have been plotted
together with the ‘‘conducting backbone’’ of the correspon
ing percolating resistor network.

The implications of these facts on the scaling behavior
the system can be quantitatively analyzed. From the solu
of Eq. ~7! for different values ofa, we can calculate the tota
molar flux JN penetrating a given realization of the netwo
pore volume. In order to measure how much the reaction
is decreased by diffusional resistances, it is practical to
fine a quantity usually called the ‘‘effectiveness factor’’
the pore catalyst@17#,

J̄N[
JN
JR

, ~9!
rd
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whereJR is the molar flux due to reaction without diffusional
limitations. In particular, for a first-order reaction,

JR5Napr
2lKC0 , ~10!

whereNa is the total number of accessible pores in the ne
work.

We performed simulations comprising 100 realizations o
2003200 networks at the percolation threshold,p5pc . Fig-
ure 4 is a double logarithmic plot of the averageJ̄N values
against the parameter ratioa. At very low values ofa, the
concentration of reactant drops rapidly, and approaches ze
at the entrance pores of the structure. In this situation

FIG. 3. Plot of the conducting backbone~thick lines! and the
active bonds available for diffusion and reaction~thin lines! in a
typical realization of a percolating network.

FIG. 4. Double-log plot ofJ̄N as a function of the diffusion-
reaction ratioa[D/K. The error bars are smaller in size than the
symbols. Straight lines showing the expected limiting, and scalin
behaviors, are also plotted for reference.
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strong pore resistance, we expect to recover the clas
behavior for diffusion and reaction in a single pore@14#,

J̄N}a1/2[l, ~11!

where we interpret the ratioa1/2 as a penetration length,l.
At very large values ofa, diffusion offers negligible re-

sistance to reaction, and the penetrating molar flux should
constant and equal to a factor times the total accessible
ume of the pore network. This is the point where the reac
species can have free access to the active surface of all p
in the percolating cluster, a situation which is equivalent
stating that the catalytic effectiveness of the system is m
mum or equal to 1,

J̄N51. ~12!

At intermediate values ofa, however, a typical scaling
behavior can be observed, which persists for more than
orders of magnitude. In this range ofa values, the reactive
tracer experiences the fractal structure of the available p
in the network. We would then expect the mass transp
through the porous media to follow an anomalous diffus
behavior. The penetration lengthl in this regime should
scale as

l}~Dt !1/dR, ~13!

wheredR is the critical exponent for diffusion and reaction
the percolating structure. In addition, if we make use of
relationsJ̄N}l andK}t21, the scaling ansatz Eq.~13! can
also be expressed in a time independent way as

J̄N}a1/dR, ~14!

which is more appropriate for the description of our partic
lar system.

The accessible volume for diffusion and reaction involv
not only the incipient infinite cluster but also the smal
clusters attached to the open side of the lattice. Accordin
the critical exponentdR should be taken as an intermedia
value between the two-dimensional random walk expon
on the incipient cluster (dw'2.87) and the correspondin
diffusion exponent which includes all clusters of the syst
at the percolation threshold (dw8 '3.02) @2#. Indeed, this is
consistent with the results shown in Fig. 4, where the lo
rithmic variation of the normalized flux penetrating the n
work in the diffusion-reaction range of 1,a,105 closely
follows a straight line with slopeg51/dw8 . These limits for
a can be directly related to the particular minimum leng
scale and system size adopted in this study. Therefore
smaller limit should correspond to the square of the low
cutoff size of the system (l 251), and the larger limit should
be comparable to the square of the network size used in
simulations (L2543104). Both are in perfect agreemen
with our simulations.

Finally, it is interesting to compare the results shown
Fig. 4 for percolating pore networks at the critical poi
(p5pc) with the behavior of a fully occupied lattic
(p51). As shown in Fig. 5, this can be done if we plot th
normalized flux for both systems against the resca
diffusion-reaction parameter,
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Nal
D 2, ~15!

whereNi is the number of accessible pores at the netw
inlet. Expectedly, in the limiting situations of strong~low
f) and negligible~high f) diffusional resistances, the tw
systems should follow exactly the same behavior which
independent of the structural features of the network. Ho
ever, in the limited range off values where the fractal ge
ometry of the percolating structure has a marked influence
its diffusive characteristics, a large discrepancy can be
served between the effectiveness of both idealized cataly

IV. DISCUSSION

We developed a model that is capable of describing
fusive mass transport and chemical reaction in percola
pore structures. The results from steady-state simulations
veal the strong influence of the pore fractality on the glo
effectiveness of the diffusion-reaction system. This rep
sents a clear indication that one must characterize the
sible self-similar morphology of the catalyst porous matrix
order to understand its behavior under reactive conditions
this way, we believe that the modeling technique utiliz
here can provide some interesting guidelines for the des
problem of a suitable catalyst porous structure for a giv
reactive system. For example, our results clearly show t
in the scaling range of the diffusion-reaction parametera,
the effectiveness of the pore catalyst can be largely ove
timated if the self-similar aspect of the void space is n
taken into consideration. Another result of potential inter
from our simulations is the remarkable difference we fou
between the effective volumes for transport in the pore n
work under inert and reactive conditions. We believe th
this might be intimately related with the divergence pre

FIG. 5. Double-log plot ofJ̄N as a function of the rescale
variablef. The solid line corresponds to the fully occupied latti
(p51), and the circles to the average values obtained from si
lations with percolating networks (p5pc).
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55 777DIFFUSION AND REACTION IN PERCOLATING PORE . . .
ously reported in several experiments to measure effec
diffusion coefficients. In conclusion, the present model
approach is flexible to represent more specific morpholog
and topological characteristics of the pore space and can
be applied to other phenomena occurring with diffusi
through a porous medium.
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